MANAGEMENT OF

ATRIAL FIBRILLATION

A GUIDELINE-BASED APPROACH
Scope of the Problem

- Lifetime risk of developing AF after the age of 40 is 25%
- 9% of people over 65 have AF
- Over 4 million people in the United States have AF
- 15-20% of strokes are due to AF
- Strokes caused by AF tend to be severe
- Stroke, dementia, and mortality increased in AF patients
Atrial Fibrillation

- Definitions
 - NOAC, NVKD-ACs are terms that have been used
 - DOAC - Direct Oral Anticoagulant
 - **Paroxysmal**: A-fib lasting > 30 seconds but < 7 days and reverting to sinus rhythm spontaneously or with intervention
 - **Persistent**: Continuous A-fib lasting > 7 days but < 1 year
 - **Longstanding Persistent**: Continuous A-fib lasting > 1 year
Atrial Fibrillation

Definitions (cont.)

Permanent:
- More of an attitude than a different electrophysiologic state
- Patient and physician make decision not to attempt to maintain sinus rhythm
- May occasionally move from Permanent back to Persistent
- Rate Control Strategy
Atrial Fibrillation

- Definitions (cont.)

- **Non-valvular atrial fibrillation**
 - Absence of mechanical or bio-prosthetic heart valves
 - No rheumatic mitral stenosis
 - No history of mitral valve repair
Atrial Fibrillation

- Chaotic Electrical Activity
- No atrial contraction
- Left Atrial Appendage
- Rate set by AV node
- Refractory period
EKG Findings
EKG Findings
Typical Isthmus-Dependent Atrial Flutter
Coarse Atrial Fibrillation
Atrial Flutter and Atrial Tachycardia

- Typical Isthmus-Dependent Right Atrial Flutter
- Atypical Isthmus-Dependent Right Atrial Flutter
- Left Atrial Flutter
- Focal Atrial Tachycardia
- Micro-Reentry Atrial Flutter
- Scar-Mediated Atrial Flutter
Stroke Risk

CHADS-VASc

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
<td>1</td>
</tr>
<tr>
<td>HTN</td>
<td>1</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>2</td>
</tr>
<tr>
<td>Vascular Dz</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥ 75</td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
</tr>
</tbody>
</table>
Bleeding Risk

HAS-BLED

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTN</td>
<td>1</td>
</tr>
<tr>
<td>Abnormal Liver/Renal Tests</td>
<td>1/1</td>
</tr>
<tr>
<td>Cr > 2.26, Bili > 2x nl, AST/ALT/AP > 3x nl</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>Bleeding (Major/Predisposition)</td>
<td>1</td>
</tr>
<tr>
<td>Labile INRs (<60% in range)</td>
<td>1</td>
</tr>
<tr>
<td>Elderly (>64 y/o)</td>
<td>1</td>
</tr>
<tr>
<td>Drugs/Alcohol (NSAID/Antiplatelet Tx)</td>
<td>1</td>
</tr>
</tbody>
</table>
Anticoagulants

- Warfarin
 - Bleeding risk highly dependent on dietary compliance, drug interactions
- Direct Oral Anticoagulants (DOAC)
 - Pradaxa (dabigatran), Xarelto (rivaroxaban), Eliquis (apixaban), Savaysa (edoxaban)
Anticoagulants
Warfarin

![Diagram showing the coagulation cascade with Warfarin, Xa Inhibitors, and Dabigatran highlighted.]

Xa Inhibitors

Dabigatran
Food Vitamin K Content

Vegetables

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green beans</td>
<td>Asparagus</td>
<td>Broccoli</td>
</tr>
<tr>
<td>Carrots</td>
<td>Avocado</td>
<td>Brussels sprouts</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>Red Cabbage</td>
<td>Cabbage</td>
</tr>
<tr>
<td>Celery</td>
<td>Green peas</td>
<td>Collard greens</td>
</tr>
<tr>
<td>Corn</td>
<td></td>
<td>Endive (raw)</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Lettuce (iceberg)</td>
<td>Kale (raw leaf)</td>
</tr>
<tr>
<td>Egg plant</td>
<td></td>
<td>Lettuce (bib, red leaf)</td>
</tr>
<tr>
<td>Mushrooms</td>
<td></td>
<td>Mustard greens (raw)</td>
</tr>
<tr>
<td>Onions</td>
<td></td>
<td>Parsley</td>
</tr>
<tr>
<td>Green pepper</td>
<td></td>
<td>Spinach</td>
</tr>
<tr>
<td>Potato</td>
<td></td>
<td>Turnip greens (raw)</td>
</tr>
<tr>
<td>Pumpkin</td>
<td></td>
<td>Watercress (raw)</td>
</tr>
<tr>
<td>Sauerkraut (canned)</td>
<td></td>
<td>Swiss chard</td>
</tr>
<tr>
<td>Tomato</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Food Vitamin K Content

Fats & Oils

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn oil</td>
<td>Margarine</td>
<td>Mayonnaise</td>
</tr>
<tr>
<td>Peanut oil</td>
<td>Olive oil</td>
<td>Canola oil</td>
</tr>
<tr>
<td>Safflower oil</td>
<td></td>
<td>Soybean oil</td>
</tr>
<tr>
<td>Sesame oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower oil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beverages

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td></td>
<td>Tea, green</td>
</tr>
<tr>
<td>Cola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit juices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tea, black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warfarin

Limitations

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Clinical Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow onset and offset of action</td>
<td>Need for bridging with a rapidly acting anticoagulant</td>
</tr>
<tr>
<td>Interindividual variability in anticoagulant effect</td>
<td>Variability in dosing requirements</td>
</tr>
<tr>
<td>Narrow therapeutic index</td>
<td>Need for routine coagulation monitoring</td>
</tr>
<tr>
<td>Food and drug interactions</td>
<td>Dietary precautions; need for routine coagulation monitoring</td>
</tr>
<tr>
<td>Reduced synthesis of all vitamin K-dependent proteins</td>
<td>Risk of skin necrosis in patients with protein C or S deficiency; potential for osteoporosis*</td>
</tr>
<tr>
<td>High Major Bleeding Rates</td>
<td>20% during first year for those with CHADS–VASc score ≥ 4</td>
</tr>
<tr>
<td>Difficult to stay in therapeutic range</td>
<td>In trials, in range 50–60% of time. (Real life?)</td>
</tr>
</tbody>
</table>
Warfarin
Limitations

- 55% of warfarin-eligible patients receive it
- Elderly even less likely
- Patients with the highest stroke risk are least likely to receive it
- 28% discontinue warfarin by 1 year
- Room for improvement!
Rats and Mice are Expensive Boarders!

KILL 'EM
WITH
warfarin

Warfarin baits kill off whole colonies of rats and mice in 5 to 14 days. No bait shyness, pre-baiting is never necessary. For proven results, look for warfarin on the label of the next baits you buy.

The New, Proven Way to
KILL RATS
and mice — with
RODENTICIDES
containing newly-discovered
warfarin.
Anticoagulants
Ximelagatran

- First DOAC, introduced in 2006 …not in USA
- Showed reduced risk of stroke
- No increased bleeding risk
- Abandoned due to liver toxicity
Anticoagulants
Dabigatran (Pradaxa)

- Administered as Dabigatran Etexilate
- Zero pharmacologic effect
- Converted to Dabigatran within 1 hr
 - $T_{\frac{1}{2}} \approx 12 - 17$ hours
- Thrombin Inhibitor (Factor II)
- Consistent 10% bioavailability
- 80% renal clearance
Anticoagulants
Dabigatran (Pradaxa)

- **RE-LY Trial**
 (Randomized Evaluation of Long-Term Anticoagulant Therapy Trial)

- 18,113 patients, open label

- AF + 1 risk factor (CHADS2 ≥ 1)

- Non-inferiority trial

- Compared Dabigatran to warfarin
 - INR goal 2.0-3.0 achieved 64% of the time

- 2 Dabigatran doses (110 mg BID & 150 mg BID)
Anticoagulants
Dabigatran (Pradaxa)

- RE-LY Trial Results
- Dabigatran 110 mg BID
 - Non-inferior to warfarin for stroke reduction
 - 20% reduction in major bleeding (p=0.003)
Anticoagulants
Dabigatran (Pradaxa)

- RE-LY Trial Results
 - Dabigatran 150 mg BID
 - 34% reduction in stroke and embolization
 - No overall increase in major bleeding
 - Increased risk of GI bleeding (11.8 vs 5.8% p<0.001)
Anticoagulants
Dabigatran (Pradaxa)

- **Dosing Recommendations**
 - **Recommended Dose is 150 mg BID**
 - **CrCl 15-30: 75 mg BID**
 - **CrCl < 15: Not recommended**
 - **Dialysis: Not recommended**
Anticoagulants
Rivaroxaban (Xarelto)

- Small molecule active drug
- Direct Factor Xa Inhibitor
- $T_{1/2} \approx 5-12$ hours (longer in elderly)
- Peak plasma concentration 2.5-4 hrs
- Consistent 50% bioavailability
- 66% urine excretion (36% unchanged)
Anticoagulants
Rivaroxaban (Xarelto)

- **ROCKET-AF Trial**
 Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation

- 14,264 patients
- Double Blinded, randomized
- Rivaroxaban 20 mg
- **Warfarin** (INR 2.0 - 3.0 - achieved 58% of the time)
- CHADS2 Score ≥ 2.0
- Half of patients had prior stroke
Anticoagulants
Rivaroxaban (Xarelto)

- ROCKET-AF Results
 - 12% relative reduction in stroke or embolization
 - NOT statistically significant
 - Non-inferior to warfarin
 - More “non-major” GI bleeding
 HR 1.42 (95% CI: 1.22 to 1.66)
 - Statistically significant reduction in intracranial hemorrhage and bleeding death
 - Strong CyP-450 3A4 inhibitors increase levels

clarithromycin, erythromycin, verapamil, diltiazem, itraconazole, ketoconazole, ritonavir, grapefruit
Anticoagulation

Apixaban (Eliquis)

- Small molecule active drug
- Direct Factor Xa Inhibitor (like Rivaroxaban)
- Peak plasma concentrations at 2 hrs
- $T_{1/2} \approx 12$ hours
- Consistent 50% bioavailability
- 25% urine excretion
- Strong CyP-450 3A4 Inhibitors increase levels
Anticoagulation

Apixaban (Eliquis)

- **ARISTOTLE Trial**
 Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation Trial

- 18,201 patients

- Apixaban 5 mg

- Warfarin (INR 2.0 - 3.0 - achieved 58% of the time)

- AF + at least one risk factor \((CHADS2 \geq 1)\)

- Lower risk patients than ROCKET-AF
Anticoagulation
Apixaban (Eliquis)

- ARISTOTLE Trial Results
 - 21% relative reduction in stroke or embolization
 - 31% relative reduction in overall bleeding
 - 11% relative reduction in mortality
 - Better tolerated than warfarin
Anticoagulation
Apixaban (Eliquis)

- AVERROES Trial
 Apixaban Versus Acetylsalicylic Acid to Prevent Strokes Trial

 - 5599 patients
 - Apixaban 5 mg vs. ASA 81-325 mg
 - Unsuitable for warfarin
 - Stopped early due to clear Apixaban superiority
 - Bleeding rates similar to ASA
 - Apixaban better tolerated than ASA (less discontinuations)
Anticoagulation
Edoxaban (Savaysa)

- Small molecule active drug
- Direct Factor Xa Inhibitor (like Rivaroxaban/Apixaban)
- Peak plasma concentration at 1 - 1.5 hrs
- $T_{1/2} \approx 8-10$ hours
- 40% urine excretion
- Consistent 50% bioavailability
- Strong CyP-450 3A4 Inhibitors increase levels
Anticoagulation
Edoxaban (Savaysa)

* ENGAGE-AF - TIMI 48
 Effective Anticoagulation With Factor Xa Next Generation in Atrial Fibrillation
 >20,000 patients
 Double Blind
 CHADS2 ≥ 2 (high risk)
 Warfarin (INR 2.0 - 3.0 - achieved 68.4% of the time)
 Bioprosthetic valves and repaired valves included
Anticoagulation
Edoxaban (Savaysa)

- ENGAGE-AF Trial Results
 - Edoxaban 30 mg daily
 - 53% relative reduction in major bleeding
 - 15% relative reduction in mortality
 - 7% relative increase in stroke or embolization
Anticoagulants
Comparison of GI Bleeding

Figure 2. Cumulative Incidence of Major Bleeding (Inpatient Bleeding) for Anticoagulant Initiation

- Warfarin vs. Apixaban: Adjusted HR: 1.93 (95% CI: 1.12 - 3.33), P=0.018
- Rivaroxaban vs. Apixaban: Adjusted HR: 2.19 (95% CI: 1.26 - 3.79), P=0.0052
- Dabigatran vs. Apixaban: Adjusted HR: 1.71 (95% CI: 0.94 - 3.10), P=0.079

Apixaban also showed significantly reduced major bleeding in all age groups, including those > 75 y/o
Anticoagulants

Direct Comparisons

<table>
<thead>
<tr>
<th>Anticoagulant</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major GI bleeding:</td>
<td>Apixaban*</td>
</tr>
<tr>
<td>Major intracranial bleeding</td>
<td>Unknown</td>
</tr>
<tr>
<td>Other major bleeding</td>
<td>Unknown</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>Unknown</td>
</tr>
<tr>
<td>Real world stroke reduction</td>
<td>All*</td>
</tr>
<tr>
<td>Cost</td>
<td>Apixaban**</td>
</tr>
</tbody>
</table>

*Based on retrospective insurance claims

**Many non-validated assumptions about cost of bleeding have to be made

Data on Savaysa is lacking due to its more recent release
Anticoagulation
Valvular AF

- RE-ALIGN
 - Dabigatran 150, 220, 300 mg vs. Warfarin
 - Mechanical Valves (AVR or MVR)
 - 252 patients (target of approximately 450 patients)
Anticoagulation
Valvular AF

- **RE-ALIGN**
 - Halted early
 - 9 CVAs in Dabigatran arm vs. 0 in Warfarin arm
 - 5 subclinical thromboses of valve vs. 0
 - Composite of stroke, transient ischemic attack, systemic embolism, myocardial infarction, or death
 - 9% in Dabigatran arm vs. 5% in Warfarin arm
 - Increased bleeding in Dabigatran arm
Anticoagulation
Valvular AF

- What did we learn?
 - Most events occurred in de-novo valve replacements
 - Because of increased bleeding, increasing the dose of Dabigatran not an option
 - Don’t use Dabigatran with mechanical valves
 - Guidelines recommend no DOAC with mechanical or bioprosthetic heart valves
 - More to come…
Anticoagulation
Valvular AF - Guidelines

- For Atrial fibrillation with a CHA$_2$DS$_2$-VASc score ≥ 2
- A DOAC is reasonable among patients with
 - Native aortic valve disease
 - Native tricuspid valve disease
 - Non-rheumatic mitral regurgitation

2017 AHA/ACC Focused Update of Valvular Heart Disease Guideline
Anticoagulation
General Guidelines

- Anticoagulate based on stroke (CHADS-VASC Score) and bleeding risks
 - HAS-BLED

- Acceptable anticoagulants: Warfarin or DOAC

- Atrial Flutter = Atrial Fibrillation

- Check and periodically monitor renal function with DOAC - reduce doses when necessary

- DOACs recommended when INRs labile on warfarin
 (< 60% in target range)
Anticoagulation Guidelines

<table>
<thead>
<tr>
<th>CHADS-VASC Score</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reasonable to omit anticoagulation</td>
</tr>
<tr>
<td>1</td>
<td>Reasonable to Anticoagulate with DOAC or warfarin</td>
</tr>
<tr>
<td></td>
<td>Reasonable to omit anticoagulation</td>
</tr>
<tr>
<td>2</td>
<td>Anticoagulate with DOAC or warfarin</td>
</tr>
</tbody>
</table>
Anticoagulation
Guidelines

- End Stage Renal Disease / Dialysis
 - Reasonable to use warfarin
 - Do not use DOAC (especially rivaroxaban and dabigatran)
 - Some recommend no anticoagulation - not in the guidelines
Aspirin

Guidelines

- Aspirin
- 23% stroke reduction for secondary prevention
- Prior recommendation driven by 1 trial
- SPAF: ↓ stroke in high-risk (CHADS-VASc ≥ 3)
- Meta-analysis
 - Reduction in stroke risk what would be expected from carotid/aortic disease
- ICH risk similar to Apixaban
- No longer in guidelines for primary prevention a-fib
- Do not use
Non-pharmacologic Stroke Prophylaxis Guidelines

- **WATCHMAN**
 - Non-inferior to warfarin
 - For patients at excessive bleeding risk
 - Used when intolerant to anticoagulants

- **LARIAT, AtriClip, surgical removal/oversewing**
 - Probably reduce CVA risk, not enough data
 - Pose significant risks
Non-pharmacologic Stroke Prophylaxis Guidelines

- **WATCHMAN**
 - Non-inferior to warfarin
 - For patients at excessive bleeding risk
 - Used when intolerant to anticoagulants
 - Need anticoagulation temporarily
 - Clopidogrel + ASA then ASA only
Reversal Agents

Warfarin

- Vitamin K and FFP
- Duration of effect of FFP: 6-8 hours
- Onset of action of IV Vitamin K: Onset 2 hrs, Peak 6-24 hrs
Reversal Agents

Dabigatran

- Dabigatran / Idarucizumab (Praxabind)
- 90% of patients showed complete reversal in 4 hours
- Reversal effect lasts 24 hours
- Approved under accelerated protocol based on reversal in healthy volunteers
- Ongoing trial of reversal for emergency surgery
Reversal Agents
Xa Inhibitors

- No reversal agents currently available
- AndexXa
 - Fast-tracked for FDA approval
 - Achieved desired endpoints in Phase III clinical trials
 - Approval delayed in August 2016 by FDA
 - Requested more information
Reversal Agents
Xa Inhibitors

- **aPCC** (Activated Prothrombin Complex Concentrate)
- 4-factor aPCC
- Not a true reversal agent
- Activates the clotting cascade
- Increased **Thrombosis**
Bridging Therapy

- Indications
 - Mechanical heart valves
 - Otherwise decide based on risks and duration

- Agents
 - Unfractionated Heparin or LMWH

- Protocols (D = procedure date)
 - Warfarin: Stop D-4, begin BID enoxaparin/heparin D-2, terminate after morning dose at D-1, resume on D or ASAP
 - DOACs: Stop D-3, Resume ASAP (immediate effect)
Cost Analysis

- Analysis is difficult
 - Depends on value placed on bleeding
 - Value placed on stroke better established
- Overall, DOACs appear to be cost effective
- Has resulted in improving coverage
Cost Analysis

<table>
<thead>
<tr>
<th>Agent</th>
<th>Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>$204</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>$140</td>
</tr>
<tr>
<td>Apixaban</td>
<td>$495</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>$340</td>
</tr>
</tbody>
</table>

A. Amin, A. Bruno, J. Trocio, J. Lin, and M. Lingohr-Smith, “Comparison of differences in medical costs when new oral anticoagulants are used for the treatment of patients with non-valvular atrial fibrillation and venous thromboembolism vs warfarin or placebo in the US,” *Journal of Medical Economics*, vol. 18, no. 6, pp. 399–409, 2015
Rate Control
Guidelines

- Use B-blockers and nondihydropyridine calcium channel blockers (diltiazem, verapamil) when needed
- Assess HR with exertion if symptomatic with exercise
- Routine ambulatory monitoring of HR not in guidelines
- IV amiodarone useful for rate control in ill patients
- Oral amiodarone is last-line therapy for rate control
Rate Control
Guidelines

- Target Resting HR
 - < 80 BPM
 - < 110 BPM if asymptomatic and LVEF monitored
Rate Control
Approaches in Specific Patient Populations

- Atrial Fibrillation
 - No Other CV Disease
 - Beta blocker
 - Diltiazem
 - Verapamil
 - Hypertension or HFP EF
 - Beta blocker
 - Diltiazem
 - Verapamil
 - LV Dysfunction or HF
 - Beta blocker
 - Digoxin
 - COPD
 - Beta blocker
 - Diltiazem
 - Verapamil
 - Amiodarone

†: Additional medication
§: Second-line therapy
Rate Control

Special Contraindications

- Ca channel blockers, digoxin, adenosine contraindicated with ventricular pre-excitation (WPW)
- Catheter ablation of WPW may reduce risk of atrial fibrillation (in select patients)
- Dronedarone contraindicated for rate control
Rate Control
Which agent is best?

In AFFIRM trial:
* B-blockers were the most effective agent for rate control (70% vs 60% for diltiazem/verapamil)
* Side-effects may be higher for some patients
* Individualize based on likely side effects
Rate Control
Digoxin

- May be useful, especially in the elderly
- Elderly have the highest risk of serious side effects
- Ineffective in controlling HR with exercise - often needs a secondary agent
- Serious pro-arrhythmia risks
- Avoid if possible
Rate Control
Ablate-and-Pace

- Used when other approaches are contraindicated or unsuccessful in controlling symptoms/heart rate
 - Highly successful
 - Produces pacemaker dependence
 - Generally reserved for more elderly patients
 - May result in pacemaker-induced cardiomyopathy
 - Bi-ventricular pacing
Rate Control

Limitations

- AFFIRM Trial
 - Rate vs. Rhythm Control
 - Both strategies equally safe and effective
 - Mainly older patients (mean 70 years)
 - In studies, rate control is better than in “real life”
- Many patients remain symptomatic despite rate control
- Non-compliance - Tachycardia-induced cardiomyopathy
Rhythm Control
Cardioversion

- A-fib duration > 48 hrs or unknown
 - Anticoagulate x 3 weeks before, 4 weeks after cardioversion
 - TEE guided cardioversion - start anticoagulation first, continue for 4 weeks
- Hemodynamic instability → cardiovert
Rhythm Control

Cardioversion

- A-fib duration < 48 hrs
 - DC or pharmacologic cardioversion is reasonable
 - If thromboembolic risk is high (CHADS-VASc ≥ 2)
 - Cardiovert
 - Use heparin, LMWH, or DOAC as soon as possible and indefinitely
 - Xarelto onset in elderly may be > 12 hrs
 - If thromboembolic risk is low (CHADS-VASc = 0 or 1)
 - Cardioversion reasonable without anticoagulation
Rhythm Control
Cardioversion

- Pharmacologic Cardioversion
 - Flecainide and propafenone most common
 - CHF!
- Pill-in-the-pocket
 - B-blocker or Ca^{++} Blocker 30 min before
 - Reduce dose in patients on chronic B-blockers?
- Oral amiodarone is reasonable - may take weeks!
Rhythm Control
Anti-arrhythmic Drugs

- Routine monitoring required with all antiarrhythmic drugs
 - Amiodarone is safe to start as an outpatient if familiar with its risks and adverse reactions
 - All others probably best initiated by cardiologist or EP
 - Discontinue most when AF becomes permanent
 - Dronedarone contraindicated:
 - Class III/IV heart failure
 - Decompensated HF within 4 weeks
Rhythm Control
Catheter Ablation

- Two ablation modalities
 - RF (point-by-point)
 - Cryo-ablation
- Both useful in different populations
- Combined techniques often used
Rhythm Control
Catheter Ablation

* Ablation superior to antiarrhythmic drugs in select patients
* Improved quality of life
* Reduced AF symptoms
* 60% reduction in cardiac mortality after ablation*
* Very elderly not studied
Rhythm Control
Catheter Ablation

- Success varies from < 30% to over 90% based on
 - Patient selection
 - Type of a-fib
 - Patient age
 - Ablative methods
 - Experience

- Complication rates generally less than 5%
 - Dependent on experience
 - Should be performed at experienced centers only
Rhythm Control
Catheter Ablation Guidelines

- Paroxysmal A-fib
 - Ablation useful
 - Typical success rates > 75-85%

- Persistent A-fib
 - Ablation reasonable after failure of at least 1 AAD
 - Success rates typically 30-60%
 - > 1 procedure necessary

- Long-term Persistent
 - Ablation reasonable in select patients only
 - Success rates lower (20-40%)
Rhythm Control
Catheter Ablation

- Contraindicated in patients that cannot be treated with anticoagulation
- Contraindicated for sole intent of stopping anticoagulation
Rhythm Control
Surgical Approaches

- Maze Procedure
 - Cut-and-sew maze highly effective but infrequently used due to complications
 - Ablative maze procedures done most frequently with other open heart procedures
 - May be considered as stand-alone when other therapies are unsuccessful
- Minimally invasive maze procedures
- Hybrid
A-fib and Heart Failure

Management

- Heart failure both causes and may be caused by a-fib
- Maintenance of sinus rhythm may be particularly important in some HF patients
- Poor rate control may seriously worsen HF
- Should generally be managed by specialists with experience with such patients
The future is bright

- Enormous amounts of research are being directed at atrial fibrillation
- Our knowledge of the underlying pathophysiology is many fold greater than just 10 years ago
- Antiarrhythmic drug progress is frustratingly slow
- Fortunately ablation has emerged as an excellent alternative for many patients
- New treatment modalities are being pursued and many advances will occur over the next decade
- The vast majority of patients can live normal day-to-day lives
MANAGEMENT OF

ATRIAL FIBRILLATION

TO BE CONTINUED...