Using TEG in the ED, OR, and ICU

Don H. Van Boerum, MD, FACS

Trauma Surgeon, Director of Surgical Critical Care, Co-Director of Shock
Trauma ICU, Intermountain Medical Center, Intermountain Healthcare
Salt Lake City, Utah

Objectives:

- Discuss the basics of TEG interpretation
- Describe the role of thromboelastography in the acutely bleeding patient
- Review the concept of TEG-guided resuscitation
TEG - Thromboelastography

Don H. Van Boerum MD FACS
Trauma Surgery
Intermountain Medical Center
Disclosures

I am recommending the use of patient treatment plans, not specific individual products that may be used in patient treatment.

I will be discussing off-label uses of TEG technology.
Objectives

- Explain the Complexities in Traumatic Coagulopathy
- Describe Thromboelastography (TEG)
- Explain Interpretation of TEG Data
- Show How TEG Can be a Useful Tool in Treating Trauma & Other Bleeding Patients
Trauma

- Leading Cause Death 1-44
- 3rd Leading Cause Death All Ages
- Hemorrhagic Shock Cause of Almost 50% in Hospital Trauma Deaths World Wide
- Hemorrhage is Leading Cause of “Preventable” Trauma Related Deaths
- 25% Severely Injured Patients Arrive with Coagulopathy
Bloody Vicious Cycle

- Life-Threatening Trauma
- Blood Loss
- Progressive Systemic Coagulopathy
- Core Hypothermia
- Metabolic Acidosis
- FFP Resistant
- FFP Sensitive
- Acute Endogenous Coagulopathy
- Clotting Factor Deficiencies
- Massive RBC Transfusion
- Iatrogenic Factors
- Cellular Shock
- Tissue Injury
- Preexisting Diseases
Five Phases of Hemostasis

1. Vascular Phase: constriction of vessel to decrease blood flow.
2. Platelet Phase: platelets adhere to injured vessel to form a plug and seal defect.
3. Coagulation Phase: coagulation factors are activated, thrombin burst, fibrin strands combine with platelets to form "clot".
4. Clot Retraction: bleeding stopped; clot retracts, becomes more firm and brings torn edges together.
5. Fibrinolysis: final repair, clot is broken up, blood flows normally.
With blood flow in the body three things can happen ...

And two of them are not good!
Steady State – Pre Injury

Thrombosis

Fibrinolysis
Injury Occurs

Thrombosis Fibrinolysis
Injury Occurs

Thrombosis Fibrinolysis
Injury Occurs

- Thrombosis
- Fibrinolysis
Injury - Early

- Thrombosis
- Fibrinolysis
Injury

Thrombosis

Fibrinolysis
Injury - Late

- Thrombosis
- Fibrinolysis
Traumatic Coagulopathy

Clotting Factors
 Consumption
 Warfarin & Newer Poisons
Platelets
 Platelet Dysfunction
 Anti-Platelet Medications
Fibrinolysis
Inherited Coagulopathies
Combinations of the Above
How Do We Currently Manage?
How Does It All Work?

Need Formation of Clot
***But Not Too Much!

Three Interrelated Systems
The Enzymatic System (Factors)

- Clot (Plug)
 - Enzymatic System
 - Fibrinogen
 - Thrombin
 - Fibrin
The Platelet System

- Clot (Plug)
 - Enzymatic System
 - Thrombin
 - Fibrin
 - Platelet System
 - Fibrinogen
 - Activation / Aggregation
 - Adhesion
The Fibrinolytic System

Clot (Plug)

Enzymatic System
- Thrombin
- Fibrinogen

Platelet System
- Fibrin
- Activation / Aggregation
- Adhesion

Lysis (Breakdown)
- Physiologic
- Pathologic: Primary & Secondary
Extrinsic Pathway

F X

F VIIa

Ca²⁺

F VII

F III (Tissue Thromboplastin)

Ca²⁺

F X

Extrinsic Pathway

Tissue/Cell Defect
Extrinsic Pathway

Measured by Prothrombin Time PT

Extrinsic Pathway

- Tissue/Cell Defect
- F VIIa
- Ca²⁺
- F VII
- F III (Tissue Thromboplastin)
- Ca²⁺
- F X
- Ca²⁺
- F Xa

Measured by Prothrombin Time PT
Intrinsic Pathway

Surface Contact
Collagen
FXII activator

F XII \rightarrow F XIIa

F XI \rightarrow F Xla

F IX \rightarrow F IXa

F X \rightarrow F Xa

Ca^{2+}
Intrinsic Pathway

Intrinsic Pathway

Surface Contact
Collagen
FXII activator

F XII → F XIIa

Ca²⁺

F XI → F Xla

Ca²⁺

F IX → F IXa

Ca²⁺

F X → F Xa

Measured by Partial Thromboplastin Time PTT
Common Pathway

- Fibrinogen
- Fibrin monomers
- Fibrin polymers
- Prothrombin II
- Thrombin IIa
- Ca²⁺

Diagram showing the common pathway in blood clotting involving fibrinogen, fibrin monomers, fibrin polymers, prothrombin II, thrombin IIa, and calcium ions (Ca²⁺).
The Coagulation Cascade

Intrinsic Pathway
- Surface Contact Collagen FXII activator

- F XII → F XIIa
 - F XI → F Xla
 - Ca²⁺

- F IX → F IXa
 - Ca²⁺
 - F VIII
 - F VIIIa
 - Platelet Factor 3

- F X → F Xa
 - Ca²⁺

Extrinsic Pathway
- Tissue/Cell Defect

- F VII → F VIIa
 - Ca²⁺

- F III (Tissue Thromboplastin)

- F X → F Xa
 - Ca²⁺

- Thrombin IIa

- F Va

- F XIIIa

- F XIII

- F XIIIa → F XIII

- Fibrin polymers

- Fibrin monomers

- Fibrinogen

Yellow lines indicate positive feedback loops lost in isolated tests
Traditional Lab Testing

Clot (Plug)

- Enzymatic System
 - Thrombin
 - Fibrinogen
- Platelet System
 - Activation / Aggregation
 - Adhesion
- Lysis (Breakdown)
 - Physiologic
 - Pathologic: Primary & Secondary

Tests:

- PTT
- PT
- INR
- Fibrinogen
- Platelet Count
- Bleeding Time
- D dimer
- PFA
- P2Y12
TEG – What Is It?

Viscoelastic Measurement of Coagulation
“Total Clot” Beginning to Fibrinolysis

Not New Technology
World War II – Hartert 1948
Liver Transplant 1970’s
Cardiac Devices 1990’s
TEG
TEG® Technology
R = Platelet function
G = Clot Strength
EPL, LY30

SP = Split Point, time to first fibrin strands
R = Reaction time to end of thrombin burst
K = fibrin cross-linkage, fibrinogen function
Angle = fibrinogen function
MA = platelet function in mm
G = MA converted to Kdynes/cm²
EPL = Estimated Percent Lysis, clot breakdown
LY30 = Lysis 30 minutes after MA reached
Alphabet Soup

SP Split Point: Initial fibrin formation

R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL

R-SP Delta: Think THROMBIN

Alpha Angle: Rate clot formation FIBRINOGEN

K Kinetics: Rate @ 20mm FIBRINOGEN

MA Maximum Amplitude: Clot strength
 PLATELET contribution...number & function

G: MA converted to dynes Clot strength

Net G: Calculated comparing baseline and result with percent platelet inhibition

EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation

R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL

R-SP Delta: Think THROMBIN

Alpha Angle: Rate clot formation FIBRINOGEN

K Kinetics: Rate @ 20mm FIBRINOGEN

MA Maximum Amplitude: Clot strength
 PLATELET contribution...number & function

G: MA converted to dynes Clot strength

Net G: Calculated comparing baseline and result with percent platelet inhibition

EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation
R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL
R-SP Delta: Think THROMBIN
Alpha Angle: Rate clot formation FIBRINOGEN
K Kinetics: Rate @ 20mm FIBRINOGEN
MA Maximum Amplitude: Clot strength PLATELET contribution...number & function
G: MA converted to dynes Clot strength
Net G: Calculated comparing baseline and result with percent platelet inhibition
EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation
R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL
R-SP Delta: Think THROMBIN
Alpha Angle: Rate clot formation FIBRINOGEN
K Kinetics: Rate @ 20mm FIBRINOGEN
MA Maximum Amplitude: Clot strength PLATELET contribution...number & function
G: MA converted to dynes Clot strength
Net G: Calculated comparing baseline and result with percent platelet inhibition
EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation
R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL
R-SP Delta: Think THROMBIN
Alpha Angle: Rate clot formation FIBRINOGEN
K Kinetics: Rate @ 20mm FIBRINOGEN
MA Maximum Amplitude: Clot strength PLATELET contribution...number & function
G: MA converted to dynes Clot strength
Net G: Calculated comparing baseline and result with percent platelet inhibition
EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation

R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL

R-SP Delta: Think THROMBIN

Alpha Angle: Rate clot formation FIBRINOGEN

K Kinetics: Rate @ 20mm FIBRINOGEN

MA Maximum Amplitude: Clot strength PLATELET contribution...number & function

G: MA converted to dynes Clot strength

Net G: Calculated comparing baseline and result with percent platelet inhibition

EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation

R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL

R-SP Delta: Think THROMBIN

Alpha Angle: Rate clot formation FIBRINOGEN

K Kinetics: Rate @ 20mm FIBRINOGEN

MA Maximum Amplitude: Clot strength PLATELET contribution...number & function

G: MA converted to dynes Clot strength

Net G: Calculated comparing baseline and result with percent platelet inhibition

EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation
R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL
R-SP Delta: Think THROMBIN
Alpha Angle: Rate clot formation FIBRINOGEN
K Kinetics: Rate @ 20mm FIBRINOGEN
MA Maximum Amplitude: Clot strength PLATELET contribution...number & function
G: MA converted to dynes Clot strength
Net G: Calculated comparing baseline and result with percent platelet inhibition
EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Alphabet Soup

SP Split Point: Initial fibrin formation
R Reaction Time: Initial clot @ 2mm FACTORS, HEPARIN, WARFARIN, DILUTIONAL
R-SP Delta: Think THROMBIN
Alpha Angle: Rate clot formation FIBRINOGEN
K Kinetics: Rate @ 20mm FIBRINOGEN
MA Maximum Amplitude: Clot strength PLATELET contribution...number & function
G: MA converted to dynes Clot strength
Net G: Calculated comparing baseline and result with percent platelet inhibition

EPL Estimated Percent Lysis: Represents clot breakdown DIC & HYPERFIBRINOLYSIS
Normal TEG® Tracing

Thrombin-generated MA

Sample: 11/21/2003 10:05AM-10:49AM

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP</th>
<th>R</th>
<th>K</th>
<th>Angle</th>
<th>MA</th>
<th>G</th>
<th>EPL</th>
<th>LY30</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.2</td>
<td>6.8</td>
<td>2.1</td>
<td>63.7</td>
<td>57.2</td>
<td>6.7K</td>
<td>1.4</td>
<td>0.4</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>1-3</td>
<td>53-72</td>
<td>50-70</td>
<td>4.5K-11.0K</td>
<td>0-15</td>
<td>0-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hemodilution/Anticoagulants

TEG ACT

<table>
<thead>
<tr>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>10.5</td>
<td>2.2</td>
<td>53 — 72</td>
<td>50 — 70</td>
<td>4.5K — 11.0K</td>
<td>0 — 15</td>
<td>0 — 8</td>
<td>58.2</td>
</tr>
</tbody>
</table>
Heparin/LMWH

Citrated kaolin

Sample: 6/24/2008 04:56AM-06:00AM

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.2</td>
<td>12.5</td>
<td>2.5</td>
<td>59.6</td>
<td>69.1</td>
<td>11.2K</td>
<td>0.0</td>
<td>0.0</td>
<td>70.3</td>
</tr>
</tbody>
</table>

Citrated Kaolin w/heparinase

<table>
<thead>
<tr>
<th>min</th>
<th>min</th>
<th>min</th>
<th>deg</th>
<th>mm</th>
<th>d/sc</th>
<th>%</th>
<th>%</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>8.8</td>
<td>1.5</td>
<td>69.6</td>
<td>72.1</td>
<td>12.9K</td>
<td>2.2</td>
<td>2.2</td>
<td>67.6</td>
</tr>
</tbody>
</table>
Factor Deficiency or Non-heparin Anticoagulants (no reversal with heparinase)
Fibrinogen Deficiency/Dysfunction

Sample: 4/26/2001 11:34AM-12:46PM

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.8</td>
<td>8.1</td>
<td>4.8</td>
<td>39.5</td>
<td>56.0</td>
<td>6.4K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Decreased Platelet Function

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.8</td>
<td>5.2</td>
<td>2.4</td>
<td>61.4</td>
<td>45.9</td>
<td>4.2K</td>
<td>0.5</td>
<td>0.0</td>
<td>45.3</td>
</tr>
<tr>
<td></td>
<td>5 — 10</td>
<td>1 — 3</td>
<td>53 — 72</td>
<td>50 — 70</td>
<td>4.5K — 11.0K</td>
<td>0 — 15</td>
<td>0 — 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: 1/31/2005 10:55AM-11:39AM
Enzymatic (Thrombin-Driven) Hypercoagulability
Platelet-Driven Hypercoagulability

Platelet Mapping

Sample: 5/22/2008 04:28PM-05:51PM

TEG ACT
SP min 7.2
R min 7.7
K min 1.0
Angle deg 77.6
MA mm 82.5
G d/sc 23.5K
EPL % 0.0
LY30 % 0.0
A mm 79.5

10 millimeters
Combination Hypercoagulability

Sample: 12/14/2004 12:06PM-01:24PM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEG ACT</td>
<td></td>
</tr>
<tr>
<td>SP min</td>
<td>4.0</td>
</tr>
<tr>
<td>R min</td>
<td>4.4</td>
</tr>
<tr>
<td>K min</td>
<td>0.8</td>
</tr>
<tr>
<td>Angle deg</td>
<td>76.7</td>
</tr>
<tr>
<td>MA mm</td>
<td>76.1</td>
</tr>
<tr>
<td>G d/sc</td>
<td>15.9K</td>
</tr>
<tr>
<td>EPL %</td>
<td>3.1</td>
</tr>
<tr>
<td>LY30 %</td>
<td>3.1</td>
</tr>
<tr>
<td>A mm</td>
<td>65.4</td>
</tr>
</tbody>
</table>
Secondary Fibrinolysis, Stage I DIC

Sample: 3/19/2001 12:10PM-01:18PM

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0</td>
<td>3.4</td>
<td>1.0</td>
<td>79.0</td>
<td>82.5</td>
<td>23.6K</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 9</td>
<td></td>
<td>1 - 3</td>
<td>59 - 74</td>
<td>55 - 74</td>
<td>5.3K - 13.2K</td>
<td>0 - 15</td>
<td>0 - 8</td>
<td></td>
</tr>
</tbody>
</table>
Secondary Fibrinolysis, Stage II
DIC

(factor deficiency)

Sample: 7/7/1998 07:42AM-09:51AM

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP</th>
<th>R</th>
<th>K</th>
<th>Angle</th>
<th>MA</th>
<th>G</th>
<th>EPL</th>
<th>LY30</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>deg</td>
<td>mm</td>
<td>d/sc</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.5</td>
<td>20.0</td>
<td>13.2</td>
<td>16.5</td>
<td>38.0</td>
<td>3.1K</td>
<td>0.5*</td>
<td></td>
<td>0—8</td>
</tr>
</tbody>
</table>

10 millimeters
Primary Fibrinolysis - TEG® Tracing

Sample: 12/8/2000 10:03PM-10:50PM

(Primary fibrinolysis)
Pattern Recognition

- Normal
- Anticoagulants/hemophilia
- Platelet Blockers
- Fibrinolysis
- Hypercoagulation
- D.I.C
 - Stage 1
 - Stage 2
Normal TEG® Analysis

INCLUDES:
- Heparin
- LMMH
- Coumadin
- Arixtra®
- Pradaxa®
- Xarelto®
- Factor Deficiency
- Fibrinogen Deficiency
- Platelet Function
- Clot Strength
- Lysis
- Surgical Bleeding from Hemostasis
- Hypercoagulability

EXCLUDES:
- Plavix®
- Effient®
- Brillinta ®
- Integrilin ®
- Reopro ®
- Aggrastat®
- Pletal®
- Persantine®
- NSAIDs
- ASA
- Pathologic Platelet Inhibition
PlateletMapping® Assay

Monitoring Platelet Inhibition and Baseline Platelet Function
Why PlateletMapping?
Personalized Platelet Therapy

Patient A: 50% platelet inhibition does not provide sufficient reduction of the risk of a thrombotic or ischemic event.

Patient B: 50% platelet inhibition provides antithrombotic protection without risk of bleeding.

Patient C: 50% platelet inhibition increases risk of bleeding.
Meds Requiring Platelet Mapping™

Platelet Inhibition

- GPIIb/IIIa
 - Reopro
 - Integrilin
 - Aggrastat

- ADP
 - Plavix
 - Persantine
 - Effient
 - Ticlid
 - Brilinta

- GPIb
 - ASA

-ASA

Integrilin

Effient

Ticlid

Brilinta
Before Plavix

% inhibition: 15.2

ADP / GPIIB IIIA Platelet Receptor, Functionally
Green Top + fXIII + ADP

% Inhib. 15.2 % Agg. 84.8

mm
MA (CK) 77.5 G (CK) 17.2
MA (A) 18.0 G (A) 1.1
MA (ADP) 68.5 G (ADP) 10.9
After Plavix

% inhibition: 93.5

<table>
<thead>
<tr>
<th></th>
<th>% Inhib</th>
<th>% Agg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrated kaolin</td>
<td>93.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>

ADP / GPIIB IIIA Platelet Reception, Functionally

Green Top + fXIII + ADP

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
<th>Kd/sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA (CK)</td>
<td>78.0</td>
<td>17.7</td>
</tr>
<tr>
<td>MA (A)</td>
<td>18.1</td>
<td>1.2</td>
</tr>
<tr>
<td>MA (ADP)</td>
<td>22.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Plavix, Effient, Ticlid, Brilinta, Integrilin, Aggrastat, Reopro, Persantine, Toradol, Pletal, Pathologic inhibition

% Inhibition: 93.5

<table>
<thead>
<tr>
<th></th>
<th>Clot strength uninhibited (Can also use CKH, K, KH sample types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Clot strength with inhibitor effect such as Plavix®, etc. (Can also use AA sample type for inhibitor effect such as aspirin, etc.)</td>
</tr>
<tr>
<td>A</td>
<td>Fibrin effect on clot strength</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% Inhib</th>
<th>% Agg.</th>
<th>Kd/sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA (CK)</td>
<td>78.0</td>
<td>G (CK)</td>
<td>17.7</td>
</tr>
<tr>
<td>MA (A)</td>
<td>18.1</td>
<td>G (A)</td>
<td>1.2</td>
</tr>
<tr>
<td>MA (ADP)</td>
<td>22.0</td>
<td>G (ADP)</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Platelet Mapping Assay
TEG Analysis: Aspirin

% Inhib: 97.7
% Agg.: 2.3

MA (CK): 52.6
G (CK): 5.5
MA (A): 8.7
G (A): 0.4
MA (ADP): 9.7
G (ADP): 0.5
Pathologic Platelet Inhibition

Not drug-induced
May be due to foods or neutraceuticals
May be underlying pathology
May impact platelet activation or aggregation
It is real, and should be considered for risk
Platelet Mapping™ Assay

HEMOSTASIS
- Hypercoagulability
- Fibrinolysis
- Surgical Bleeding from Hemostasis
- Factor Deficiency
- Fibrinogen Function
- Platelet Function

PLATELET MAPPING™ INTERVENTION

- Shows percent platelet inhibition due to:
 - Interventional Treatment
 - Pathologic Inhibition

INCLUDES:

DRUGS:
- Heparin
- LMWH
- Coumadin
- Arixtra®
- Pradaxa®
- Xarelto®
- Plavix®
- Effient®
- Ticlid®
- Brilinta®
- Reopro®
- Integrilin®
- Aggrastat®
- ASA
- NSAIDs
Objectives of TEG-Guided Therapy

To express function and pinpoint dysfunction in the hemostasis system

• Reference the appropriate types and amounts of blood products needed to correct bleeding from this dysfunction

• Allow accurate anticoagulation or antiplatelet interventions to reduce thrombotic complications without inappropriate bleeding
Objectives of TEG-Guided Therapy

- To distinguish between anatomical and coagulopathic bleeding
- To distinguish primary from secondary fibrinolysis, including the consumptive phase
- To reduce the use of unnecessary blood products and reduce thrombotic complications
Stab Wound
Aorta, SMA, Liver, Pancreas

<table>
<thead>
<tr>
<th>TEG ACT</th>
<th>SP min</th>
<th>R min</th>
<th>K min</th>
<th>Angle deg</th>
<th>MA mm</th>
<th>G d/sc</th>
<th>EPL %</th>
<th>LY30 %</th>
<th>A mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.2</td>
<td>8.0</td>
<td>3.4</td>
<td>49.7</td>
<td>31.2</td>
<td>2.3K</td>
<td>76.7</td>
<td>76.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Post Op One Hour
Post Op Day 1
Massive Resuscitation

5 Liter Bloodloss
30 PRBC 30 FFP 5 Platelets (8Pk equiv)

Normalized TEG by End of Case

Hypercoagulable in Less Than 24 hours!
Limitations of TEG

• Von Willebrand’s Disease (endothelial adhesion)
• Lupus Anticoagulant
• Protein C & S deficiency
• Factor V Leiden
• HIT
Conclusions

• Traditional Coagulation Tests Alone are Inadequate
• TEG Measures Global Clot Formation
• TEG Identifies the Contribution of Platelets and Fibrinolysis to Hemostasis
• TEG Allows a Targeted Guide to Blood Component Therapy – Reducing Overtransfusion
• TEG May Also be Useful in Guiding VTE Prophylaxis
More Conclusions

• Platelet Mapping Accounts for Platelet Dysfunction from Drugs & Injury
• Early Recognition of Fibrinolysis May Improve Outcomes with Treatment (TXA)
• TEG Guided Therapy will Continue to Evolve with More Studies