Chloride Channel Protein Abundance is Persistently Elevated during Evolution of Neonatal Chronic Lung Disease in Preterm Lambs

L Deneckere, N Brewster, MJ Dahl, L Dong, ZM Wang, BA Yoder, DM Null, DP Carlton, and KH Albertine
Disclosure Statement

Laura Deneckere does not have anything to disclose
Fetal Lung Architecture

- Normal fetal development
 - Canalicular or saccular stages

Human Distal Lung Architecture

22 weeks gestation 32 weeks gestation

http://o.quizlet.com
Ion Transport: Fetal Lung *In Utero*

- Net chloride (Cl⁻) secretion predominates
- Apical chloride (Cl⁻) intracellular channels (CLIC)
- Net liquid flow from blood to potential airspaces

Ion Transport: Labor and Postnatally

- Ion transport switches from net Cl\(^-\)-secreting to net sodium (Na\(^+\))-absorbing epithelium
 - Basolateral Na\(^+\), K\(^+\)-ATPase pump activity
 - Reverses direction of net liquid flow

Preterm Birth and Neonatal Lung Injury

- Preterm birth is frequently associated with
 - Respiratory distress that requires intermittent mandatory ventilation
 - Neonatal acute lung injury
 - Interstitial and airspace edema
 - Airspace edema is the result of net liquid imbalance across the epithelial barrier
Unknown

If protein abundance of Cl⁻ channels and Na⁺, K⁺-ATPase pumps is affected differently by ventilation mode used to support preterm neonates

Hypothesis

Protein abundance of Cl⁻ channels and Na⁺, K⁺-ATPase pumps is affected differently by ventilation mode used to support preterm lambs
Preterm Lamb Model

- Antenatal steroids

Delivered at ~131 days
(Term is ~150 days)

Intubated and treated with surfactant and caffeine citrate

Intermittent mandatory ventilation (IMV) ~3 hours

- Invasive IMV
 (Dräger Babylog VN500 ventilator
 5-7 mL/Kg tidal volume)

- Less-invasive HFNV
 (Percussionaire® ventilator)

3 or 21 days

HFNV, high-frequency nasal ventilation
Management

❖ Preterm lambs

● During ventilation
 ● PaO₂ 60-80 mmHg
 ● PaCO₂ 45-60 mmHg
 ● pH 7.25-7.45
 ● Treated with antibiotics
 ● Enteral feedings, using ewe’s colostrum and milk, starting at 3 to 4 h of life
 ● Plasma glucose 60-90 mg/dL
Analyses

- Immunoblot
 - Cl⁻ channels
 - Na⁺, K⁺-ATPase pumps
More Cl⁻ Channel Protein at 3d of IMV

Relative Protein Abundance (Normalized MemCode)

Mean ± SD; n=4

* p<0.05 compared to PT3d HFNV
† p<0.05 compared to F134
More Na^+, K^+-ATPase Pump Protein at 21d of IMV

Mean ± SD; n=4

* $p<0.05$ compared to PT21d HFNV

† $p<0.05$ compared to T1d
Na+,K+-ATPase β Immunolocalization, 3d

F131

Preterm 3d

Invasive

IMV

Less-invasive

HFNV
Na⁺,K⁺-ATPase β Immunolocalization, 21d

F131

T1d

Preterm 21d

Invasive IMV

Less-invasive HFNV
<table>
<thead>
<tr>
<th>Days of Ventilation</th>
<th>Cl(^-) Channel</th>
<th>Na(^+), K(^+)-ATPase pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days</td>
<td>↑ IMV *</td>
<td></td>
</tr>
<tr>
<td>21 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Compared to less-invasive HFNV and unventilated reference lambs
Summary for Protein Abundance

<table>
<thead>
<tr>
<th>Days of Ventilation</th>
<th>Cl⁻ Channel</th>
<th>Na⁺, K⁺-ATPase pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days</td>
<td>↑ IMV *</td>
<td></td>
</tr>
<tr>
<td>21 days</td>
<td>No differences</td>
<td></td>
</tr>
</tbody>
</table>

* Compared to less-invasive HFNV and unventilated reference lambs
Summary for Protein Abundance

<table>
<thead>
<tr>
<th>Days of Ventilation</th>
<th>Cl⁻ Channel</th>
<th>Na⁺, K⁺-ATPase pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days</td>
<td>↑ IMV *</td>
<td>No differences</td>
</tr>
<tr>
<td>21 days</td>
<td>No differences</td>
<td></td>
</tr>
</tbody>
</table>

* Compared to less-invasive HFNV and unventilated reference lambs
Summary for Protein Abundance

<table>
<thead>
<tr>
<th>Days of Ventilation</th>
<th>Cl⁻ Channel</th>
<th>Na⁺, K⁺-ATPase pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days IMV</td>
<td>↑ IMV *</td>
<td>No differences</td>
</tr>
<tr>
<td>21 days</td>
<td>No differences</td>
<td>↑ IMV</td>
</tr>
</tbody>
</table>

* Compared to less-invasive HFNV and unventilated reference lambs
Conclusion

- Protein abundance of Cl⁻ channels and Na⁺, K⁺-ATPase pumps is disrupted during invasive IMV
Speculation

- More protein abundance of Cl⁻ channels at 3d of invasive IMV
 - May contribute to wetter lungs
 - Necessitate higher inspired oxygen and airway pressures

- More protein abundance of Na⁺, K⁺-ATPase pump at 21d of invasive IMV
 - May be a compensatory response to dry the lung’s parenchyma
Thank you

Supported by
HL110002
HL062875
LU-R1 Program (Lawrence University)