Overview

• A lot of focus on proximal humerus fractures
• General knowledge is good on injuries that are clearly often nonoperative
 – Non-displaced fx
 – Clavicle fractures
 – Scapular body fractures
• Very poor understanding of operative indications
 – Most should be treated non-operatively

 • KEY IS NOT MISSING THOSE THAT SHOULD BE FIXED
Overview

• Scapular fractures
 – Body
 – Glenoid neck
 – Glenoid cavity
 – Acromion
 – Coracoid
• Midshaft Clavicle Fractures
• Distal Clavicle Fractures
Scapular Fractures
Scapular fractures

• 1% of all fx, 3% of all shoulder girdle fx
• Low incidence – protected by rib cage and muscles; mobility allows dissipation of forces
• Scapular fx
 – Body 50%
 – Glenoid neck 25%
 – Intraarticular glenoid 10%
 – Acromion 7%
 – Coracoid 7%
Scapular Fractures

- Often associated with other injuries – high energy; diagnosed and treated late
- Direct trauma; Indirect muscle avulsion
- Examination – complete neuro exam; axillary nerve sensation and palpate deltoid contraction
- Radiographs – shoulder series; CT scan with 3D reconstructions
Treatment

• Majority treated nonoperatively
 – Almost all body fractures; majority of neck and fossa injuries
 – Short term immobilization for pain control only
 – May want to protect nondisplaced avulsion fxs longer until healing – usually at 6 weeks – with interval XRAYs to insure they remain nondisplaced

• Operative indications
Scapular body fractures

- Most common
- High incidence of associated injury – look for scapulothoracic dissociation, pneumothorax
- Tx – sling for comfort and early motion at 1 – 2 weeks, pulleys at 4 weeks, active motion and progressive strengthening at 6 weeks; takes 12 weeks to recover
- Only possible operative indication is displaced fracture of inferior angle with inferior fragment displaced deep to superior fragment – prevent scapthoracic crepitus
Glenoid Fossa Fractures

• Rim or Fossa fx?
 – Rim occur with laterally directed force drives head into glenoid margin – usually very small
 – Some have indicated fixation if > 10mm of displacement and large to prevent instability
 – My recommendations for surgery for Rim fx
 • Instability – unable to keep joint reduced
 • Subluxation humeral head on axillary or CT
Treatment of Glenoid Rim Fractures

• Nonoperative – Sling for 4 weeks
 – Allow pendulums, passive supine elevation and active assisted ER at side starting at 2 weeks.
 – Limit Abduction and external rotation and active elevation over 90 degrees for first 6 weeks

• Operative –
 – Usually anterior
 – If Bankart fracture, consider arthroscopic repair
 – Usually anterior, standard deltopectoral approach, subscap split or takedown, open anterior instability repair with anchors or bone tunnels
 – Postoperative course – same as instability repair
Glenoid Fossa Fractures

• Laterally directed force driving humerus into glenoid fossa
• Transverse fracture that propagates
• How much displacement is too much?
 – Kavanagh, Cofield JBJS 1993. Displacements ranged between 4 – 8 mm
 – Soslowsky CORR 1992. Ave. cartilage thickness 5 mm
• Relative indication
 – 5 mm
 – Highly comminuted – would probably lean towards nonop/ bag of bones
• Absolute indication
 – 1 cm intraarticular displacement
 – Humeral head subluxation or instability
 • Gerber C. JBJS Br. 2007
Ideberg classification – determines approach
Operative Results of Glenoid Fossa fx:

- Schandelmaier, Krettek. JBJS Br 2002
 - 22 displaced fossa fractures
 - Mean 10 year followup
 - ORIF for fx with 5 mm or more displacement
 - 16 posterior approach, 6 anterior approach
 - Mean Constant 79%
 - Score < 50% in 4 patients
 - 148 degrees forward elevation
Glenoid Neck Fractures

• Direct blow, fall on outstretched arm, fall on superior aspect of shoulder

• If superior support structures (clavicle- AC joint – acromion or coracoid – CC ligaments), then displacement is likely

• ***Ada and Miller. CORR 1991. Eval of 113 scapular fractures. Of the 16 fractures with displacement greater than 1 cm or 40 degrees of angulation in coronal or axial plane; 20% decreased motion, 50% had pain, 40% had weakness, 25% popping
Glenopolar angle

30 to 45 degrees normal

AP of bilateral clavicles on same Film with arms at side and palms supinated
Glenoid Neck Fractures

- Glenopolar angle –
 - Romero et al. Orthop Trauma Surg 2001. < 20 degrees is indicative of severe rotational malalignment and denotes inferior displacement
 - GPA < 30 affected Constant score in floating shoulder
 - 18 patients – Ave. constant score of GPA > 30 = 83; Ave. Constant score of GPA < 30 = 75 (P = 0.05)
Glenoid Neck Fractures

- Radiographs, CT with 3-D images
- Fracture patterns – anatomic neck (exits lateral to coracoid), surgical neck (exits medial to coracoid)
- Watch out for fractures through inferior glenoid neck that runs along or through inferior border of scapular spine to exit the medial or superior border of the scapula --- treat nonop as scapular body fracture
Glenoid Neck Fractures

- Independent of other injuries
- **Consider ORIF for** –
 - 2 cm of medial displacement
 - Angulation greater than 40 degrees
 - GPA < 30
Operative approach

- Anterior – Standard Deltopectoral
- Posterior approach –
 - Extensile Judet Approach
 - Neck/fossa fractures that have significant involvement of the body
 - Elevate entire infraspinatus from the fossa
 - Limited posterior approach
 - My preferred technique for neck and fossa fractures
 - Be liberal taking down posterior deltoid, repair through bone tunnels
 - Watch for circumflex scapular artery and axillary nerve
Floating Shoulder

- 0.1% of fractures
- Definition
- Superior shoulder suspensory complex (SSSC)
- Acromion, coracoid, distal clavicle, glenoid, CC ligaments, AC joint
- Williams et al. JBJS 2001. CA ligament part of complex
Floating Shoulder

• Double fracture, neck and single ligament or double ligament
• Equally divided between op and non-op
• Edwards et al. JBJS 2000.
 – 20 patients; < 5mm displacement of scapula equal to surgical results; Also patients w/ 5 – 10 mm of scap displacement/ 10 of clavicle do well
• Ramsey et al.
 – > 25 mm of glenoid medialization had less elevation
Floating

- Some say fix clavicle alone (Rikli et al, Herscovici et al); some say fix both
- Egol et al. JBJS 2001. Compared op and nonop and found no difference in outcomes

- Tashjian Recommendations:
 - Treat the fractures individually – If clavicle is displaced 2 – 3 cm of shortening/comminution then fix; if neck displaced > 2 cm or angulation > 40 degrees
Acromial Fractures

- One of 2 mechanisms – downward direct blow, superior displacement of head
- With downward blow, usually min. displaced – if displaced r/o plexus injury
- With superior displacement, r/o cuff injury
- Kuhn – type I – min. displaced or displaced without subacromial narrowing; type II – displaced with subacromial narrowing
Acromial fx

- 90% nonop – make sure not Os (get x-rays of opposite side; 60% bilateral)
- Operative –
 - young, active patient with < 50% apposition of fragments and/or cuff tear
 - Kuhn indications
 - Usually at posterolateral corner of acromion just behind ac joint extending posterior and laterally
 - Fix with tension band if more lateral or plate if more medial along the spine of scapula
Coracoid Fractures

- Commonly occur with AC dislocation, GH dislocation, and clavicle fx
- Very limited reports
- Ogawa et al. Reported on 67; Type I between glenoid and CC ligaments; Type II distal to CC ligaments – rec. ORIF of Type I with good results
- Indications – Type I with glenoid involvement with glenoid displacement > 5 mm; Maybe Type I with < 5 mm of subcoracoid space; Type I with AC separation
Clavicle Fractures
Midshaft Clavicle Fractures

• Clavicle fractures – 2.6% of all fractures (64 per 100,000 per year); midshaft 80%; lateral 17%

• Bimodal distribution - young males; older females

• Historical data – nonunion and malunion rates are very low; < 5%

• More recent data support increased risk for nonunion based upon subgroups
 – Age; sex; amount of displacement/comminution; smoking; location of injury
3 Questions Driving Clavicle Fx Management

• Historical non-operative – most did well – some didn’t nonunion/malunion
 – 1.) Are malunions clinically important?
 – 2.) Do operatively treated fractures in general do better than nonoperative?
 • Metrics– Clinical outcomes; fracture healing
 – 3.) If union is the only thing that matters, what factors are associated with nonunion?
1.) Are malunions clinically important?

- Is healing the only thing that matters or does deformity affect function
- Mckee MD et al JBJS Am 2003
 - 15 patients with malunion after midshaft clavicle fracture
 - Average 3 cm shortening
 - (1.6 cm to 4 cm)
 - DASH from 32 to 12
 - Shortening improved from 2.9 to .4
Do malunions exist?

- Probably…but very rare
- Figueiredo et al BMC Musculoskeletal Disord 2015
 - 59 patients midshaft fx treated nonop
 - Mean shortening 1 cm
 - Range – 0 – 3 cm
 - Final DASH – 8.2; vas pain 0.8
 - No correlation between DASH and shortening
 - In patients > 2 cm shortening, no effect on limb function
2.) Do operatively treated fractures do better than nonoperatively treated?

- Canadian Orthopaedic Trauma Society. JBJS Am 2007
 - Multicenter, randomized clinical trial
 - 132 patients; displaced midshaft clavicle fractures
 - Randomized to nonop vs plate fixation
 - Union – 28 wks nonop vs 16 wks op
 - 11% nonunion nonop vs 3% op
 - 3 infections
 - DASH better by 10 points with ORIF; **JUST AT THE MCID** (but includes all patients with non-unions)
....but 10 years later...

- Woltz et al. JBJS Am 2017
 - Multicenter prospective randomized trial
 - ORIF vs nonop of displaced midshaft fractures
 - 160 patients randomized
 - Nonunion higher in nonop vs op (23% vs 2.4%)
 - Secondary surgery higher for operative vs nonop (27% vs 17%)
 - No difference Constant or DASH scores at 1 year

So, primary reason to fix is increase chance to heal
3.) What factors are associated with nonunion w/nonop tx?

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Displaced</th>
<th>Comminuted</th>
<th>Displaced and Comminuted</th>
<th>Not Displaced, Not Comminuted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>25</td>
<td>19%</td>
<td>8%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>35</td>
<td>20%</td>
<td>11%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>45</td>
<td>25%</td>
<td>14%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>55</td>
<td>28%</td>
<td>18%</td>
<td>12%</td>
<td>6%</td>
</tr>
<tr>
<td>65</td>
<td>33%</td>
<td>20%</td>
<td>18%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Age, sex, displacement, comminution

<table>
<thead>
<tr>
<th>Overall Displacement (mm)</th>
<th>Noncomminuted Fracture in Nonsmoker</th>
<th>Comminuted Fracture in Nonsmoker</th>
<th>Noncomminuted Fracture in Smoker</th>
<th>Comminuted Fracture in Smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>12</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>23</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td>30</td>
<td>26</td>
<td>39</td>
<td>57</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>62</td>
<td>74</td>
<td>86</td>
<td>92</td>
</tr>
</tbody>
</table>

Displacement, comminution, smoking

Brinker et al JBJS 2005
Murray et al JBJS 2013
So Why Fix Midshaft Clavicle Fractures?

• Answer – Reduce the risk of nonunion...period.

• Can discuss malunion but risk is very rare unless severe shortening (3 – 4 cm)

• Reason to operate – reduced the risk of nonunion to < 1%

• *Give patient option based upon risk factors and risk reduction and let them decide* – Incur risks of surgery to reduce risk of nonunion
Lateral Clavicle Fractures

- Neer – I – CC ligaments intact, II – CC ligaments disrupted, III – intraarticular
- 20 – 30% of II fail to heal; even if they do heal – take very long, up to 3 months
- Nonop for type I and III
- Operative for II; some others say nonop for all and treat delayed II like AC separations
- Multiple techniques – Hook plate, transacromial fixation, distal radius plate
- Preferred – CC fixation with suture + figure 8 suture fixation of fracture
THANK YOU

Shoulder and Elbow Surgery
Department of Orthopaedics
University of Utah School of Medicine